Isolation and Absolute Structures of Enantiomeric 1,2-Bis(4-hydroxy-3-methoxyphenyl)-1,3-propanediol 1-*O*-Glucosides from the Bark of *Hovenia trichocarpa*

Kazuko Yoshikawa,* Noriko Mimura, and Shigenobu Arihara

Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan

Received January 14, 1998

Two 1,2-bis(4-hydroxy-3-methoxyphenyl)-1,3-propanediol 1-*O*-glucosides, hovetrichosides A (1) and B (2), were isolated from the bark of *Hovenia trichocarpa*. Their structures were established by extensive NMR experiments and chemical methods. Compounds 1 and 2 were (1R), (2S)-1-(4-hydroxy-3-methoxyphenyl)-2-(4-hydroxy-3-methoxyphenyl)-1,3-propanediol 1-*O*- β -D-glucopyranoside and (1S), (2R)-1-(4-hydroxy-3-methoxyphenyl)-2-(4-hydroxy-3-methoxyphenyl)-1,3-propanediol 1-*O*- β -D-glucopyranoside, respectively.

Hovenia trichocarpa Chun & Tsiang (Rhamnaceae), a deciduous tree up to 20 m high, is indigenous to the southern part of Japan. The bark of this species is used as a remedy for crapulence and as an underarm deodorant.¹ Recently, we reported the isolation of five new phenolics, named hovetrichosides C–G from the fresh bark of this plant.² Further fractionation by Si gel and reversed-phase HPLC gave hovetrichosides A (1) and B (2), along with other phenolics. We describe here the isolation and structure elucidation of 1 and 2 by various NMR techniques, including COSY, HMQC, HMBC, TOCSY, and ROESY experiments and chemical degradation.

Compounds 1 and 2 were obtained as pale yellow powders. The common molecular formula, $C_{23}H_{30}O_{11}$ for 1 and 2, is based on a quasi-molecular ion peak at m/z505 $[M + Na]^+$, 521 $[M + K]^+$ in the FABMS, and the number of signals observed in the ¹³C NMR spectra. The IR absorption maxima at 3395, 1605, and 1520 cm^{-1} and the λ_{max} at 210, 233, and 278 nm in the UV spectra suggested the presence of an aromatic ring. The ¹³C NMR spectra revealed 17 signals; these were sorted, by DEPT experiments, into MeO \times 2, OCH₂ \times 1, OCH \times 1, CH \times 1, =CH \times 6, and =C \times 6 (Table 1), except for the six signals due to a hexose, indicating that 1 and 2 were 1,2- or 1,3-biphenyl 1,3-propanediol monosaccharides. The ¹H NMR spectrum of **1** exhibited, in the aromatic region, two sets of ABX-type signals at δ 7.46 (1H, d, J = 2.0 Hz), 7.20 (1H, dd, J = 8.0, 2.0 Hz), and

7.16 (1H, d, J = 8.0 Hz) and at δ 7.23 (1H, d, J = 2.0Hz), 7.09 (1H, d, J = 8.0 Hz), and 7.03 (1H, dd, J = 8.0, 2.0 Hz) and two methoxy signals at δ 3.64 and 3.62, indicating that compound **1** had two guaiacyl groups. ABMX-type signals were observed in the aliphatic region at δ 6.05 (d, J = 4.5 Hz), 4.75 (dd, J = 11.0, 8.0 Hz), 4.20 (dd, J = 11.0, 5.5 Hz), and 3.58 (ddd, J = 8.0, 5.5, 4.5 Hz). The HMBC experiment revealed longrange coupling from H-1 to C-2, C-3, C-1', C-2', C-6', C-1", and C-1 of the hexosyl; and from H-2 to C-1, C-3, C-1', C-1", 2" and C-6". These correlations indicated that 1 and 2 were 1,2-bis(4-hydroxy-3-methoxyphenyl)-1,3-propanediol 1-O-saccharides. Enzymatic hydrolysis of 1 and 2 afforded 1,2-bis(4-hydroxy-3-methoxyphenyl)-1,3-propanediol (3a) and 1,2-bis(4-hydroxy-3-methoxyphenyl)-1,3-propanediol (**3b**), respectively,³⁻⁸ and Dglucose was confirmed by specific rotation using chiral detection in HPLC analysis.² Furthermore, the coupling constant (J = 7.5 Hz) observed for the anomeric protons in the ¹H NMR spectra of **1** and **2** indicated the β -glucoside linkage for the D-glucose moiety.

Compounds **3a**, $[\alpha]^{25}_{\rm D}$ -40.5° (*c* 1.2, MeOH), and **3b**, $[\alpha]^{25}_{\rm D}$ + 41.0 (*c* 0.7, MeOH), each revealed a $[M - H]^-$ at m/z 319 in the negative FABMS. Their spectroscopic properties were the same except for opposite rotary polarizations, establishing that they were enantiomers. The relative stereochemistry of C-1 and C-2 of **3** was determined to be erythro by comparing the NMR spectra with those of erythro and threo isomers.⁹ The absolute stereochemistry of C-1 and C-2 was established by the glycosylation shift rule,¹⁰ taking account of threo isomers. The Δ values of +4.2 ppm for C-1 and -2.7 ppm for C-2 in **1** and +7.7 ppm for C-1 and -0.7 ppm for C-2 (*S*) in **3a**, the C-1(*S*),

^{*} To whom correspondence should be addressed. Tel.: (81) 0886-22-9611. Fax: (81) 0886-55-3051. E-mail: yosikawa@ph.bunri-u.ac.jp.

Table 1. ¹H and ¹³C NMR Data (600 and 150 MHz) for Hovetrichosides A (1) and B (2), and Compound 3 in Pyridine- d_5

carbon no.	1		2		3	
	¹³ C	¹ H, mult	¹³ C	¹ H, mult	¹³ C	¹ H, mult
1	78.8	6.05 d (4.5)	82.3	5.98 d (3.5)	74.6	5.74 d (5.0)
2	55.5	3.58 ddd (8.0, 5.5, 4.5)	55.7	3.67 ddd (9.5, 5.5, 3.5)	57.1	3.64 dt (5.0, 6.5)
3	64.0	4.75 dd (11.0, 8.0)	63.7	4.88 dd (10.5, 9.5)	64.5	
		4.20 dd (11.0, 5.5)		4.32 dd (10.5, 5.5)		4.37 dd (10.0, 6.5)
1′	132.9		133.5		137.1	
2'	112.3	7.46 d (2.0)	112.4	7.20 d (2.0)	111.6	7.29 d (2.0)
3′	148.2		148.0		148.2	
4'	147.1		147.0		146.9	
5'	115.8	7.16 (d) (8.0)	115.8	7.09 d (8.0)	115.9	7.16 d (8.0)
6'	120.8	7.20 dd (8.0, 2.0)	120.6	7.12 dd (8.0, 2.0)	120.2	7.20 dd (8.0, 2.0)
1″	131.2		131.2		132.6	
2″	114.6	7.23 d (2.0)	115.5	7.25 d (2.0)	114.8	7.27 d (2.0)
3″	147.9		147.9		148.1	
4‴	146.6		146.8		146.7	
5″	115.7	7.09 d (8.0)	115.0	7.08 d (8.0)	115.8	7.16 d (8.0)
6''	123.3	7.03 dd (8.0, 2.0)	123.3	7.14 dd (8.0, 2.0)	123.3	7.20 dd (8.0, 2.0)
MeO 3'	55.7	3.62 s	55.7	3.58 s	55.7	3.62 s
MeO-3"	55.7	3.64 s	55.9	3.65 s	55.8	3.66 s
glc 1	102.7	4.98 d (7.5)	104.7	5.30 d (7.5)		
2	75.3	4.16 dd (8.5, 7.5)	76.4	4.22 m		
3	79.1	4.15 dd (8.5, 8.5)	78.7	4.22 m		
4	72.6	4.12 dd (8.5, 8.5)	71.6	4.24 m		
5	78.1	3.97 ddd (8.5, 5.5, 2.5)	78.5	3.81 m		
6	63.5.	4.65 dd (11.5, 2.5)	62.6	4.63 dd (11.5, 2.5)		
		4.31 dd (11.5, 5.5)		4.24 dd (11.5, 5.5)		

C-2(*R*) in **3b**. Consequently, the structures of **1** (hoverrichoside A) and **2** (hoverrichoside B) were concluded to be (1R), (2S)-1-(4-hydroxy-3-methoxyphenyl)-2-(4-hydroxy-3-methoxyphenyl)-1,3-propanediol 1-*O*- β -D-glucopyranoside and (1S), (2R)-1-(4-hydroxy-3-methoxyphenyl)-2-(4-hydroxy-3-methoxyphenyl)-1,3-propanediol 1-*O*- β -D-glucopyranoside, respectively.

1,2-Bis(4-hydroxy-3-methoxyphenyl)-1,3-propanediol has been obtained only as a racemate and its relative configuration elucidated (threo or erythro), either as natural products^{2,4–7} or synthetic products.^{3,8} To the best of our knowledge, **3a** and **3b** are the first naturally occurring optically active compounds of 1,2bis(4-hydroxy-3-methoxyphenyl)-1,3-propanediol.

Experimental Section

General Experimental Procedures. Optical rotations were taken on a JASCO DIP-360 polarimeter. IR spectra were recorded on a JASCO FT/IR-5300; NMR spectra, on Varian UNITY 600 and/or JEOL GSX-400 spectrometer in pyridine- d_5 solutions using TMS as internal standard. NMR experiments included ¹H-¹H COSY, ¹³C-¹H COSY, HMBC, TOCSY, and ROESY. Coupling constants (*J* values) are given in Hertz. The FABMS (Xe gun, 10 kV, triethylene glycol as the matrix) was measured on a JEOL JMS-PX303 mass spectrometer. HPLC separations were performed with a Hitachi HPLC system (L-7100 Pump, L-4000 UV).

Plant Material. Bark of *Hovenia trichocarpa* was collected in April 1995. A voucher specimen (TB 5421) is deposited in the Herbarium of the Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan.

Extraction and Isolation. Fresh bark (10 kg) of *H. trichocarpa*, collected in Tokushima Prefecture, in April 1995, was extracted with absolute EtOH at room temperature for 6 weeks. The EtOH extract (200 g) was partitioned between H_2O and EtOAc. The H_2O layer was passed through an Amberlite XAD-2 column. After

the column was washed with H_2O , the adsorbed materials were eluted with 20% MeOH, 50% MeOH, and 100% MeOH. The 50% MeOH eluate (9 g) was chromatographed on Si gel with CH_2Cl_2 -MeOH-EtOAc- H_2O (2: 2:4:1, lower layer) to give five fractions (1–5). Fraction 4 (22.5 g) was subjected to HPLC on ODS (Develosil Lop ODS, 70% MeOH) to give five subfractions. Subfractions 2 and 3 were purified by preparative HPLC (YMC, ODS S-5, 3–5% CH₃CN) to afford hovetrichosides A (1, 40 mg) and B (**2**, 30 mg).

Hovetrichoside A (1): An amorphous powder; $[\alpha]^{25}_{\rm D}$ -62.8° (*c* 1.2, MeOH); UV (MeOH) $\lambda_{\rm max}$ (log ϵ) 210 (4.26), 228 (4.24), 280 (3.87); FT-IR (dry film) $\nu_{\rm max}$ 3395 (OH), 1605, 1520 (aromatic) cm⁻¹; NMR, see Table 1; FABMS m/z [M + K]⁺ 521, [M + Na]⁺ 505.

Hovetrichoside B (2): an amorphous powder; $[\alpha]^{25}_{\rm D}$ +24.1° (*c* 0.7, MeOH); UV (MeOH) $\lambda_{\rm max}$ (log ϵ) 208 (4.01), 230 (3.86), 256 (3.45), 261 (3. 39), 280 (3.46); FT-IR (dry film) $\nu_{\rm max}$ 3395 (OH), 1605, 1520 (aromatic) cm⁻¹; NMR, see Table 1; FABMS *m*/*z* [M + K]⁺ 521, [M + Na]⁺ 505.

Enzymatic Hydrolysis of Hovetrichoside A (1). A solution of 1 (20 mg) in EtOH (0.2 mL) and 0.01M NaH₂PO₄ buffer (pH4.0, 1.8 mL) was incubated with crude cellulase (20 mg, Sigma) for one week at 37 °C. The reaction mixture was passed through a column of Amberlite XAD-2, and washed with H₂O, and then eluted with MeOH. From the H_2O eluate, D-(+)-glucose was detected by using RI detection (Waters 410) and chiral detection (Shodex OR-1) in HPLC (Shodex RSpak NH₂P-50 4E, 95%CH₃CN containing 1%H₃PO₄, 1 mL/ min, 47 °C) by comparison with an authentic sugar (each 10 mmol D-glc and L-glc). The sugar portion gave the following peak: D-(+)-glc 25.4 min. The crude hydrolysate (12 mg) obtained from the MeOH was chromatographed on a Si gel column with CHCl3-MeOH-H₂O (25:2:0.1) to give 3a (8 mg) as an amorphous powder: $[\alpha]^{25}_{D}$ –40.5° (*c* 0.7, MeOH); NMR data, see Table 1; FABMS m/z [M – H]⁻ 319; EIMS m/z [M $(-18]^+$ 302 (40), 284 (35), 272 (90), 150 (75), 135 (55), 84 (100).

Enzymatic Hydrolysis of Hovetrichoside B (2). A solution of 2 (20 mg) was carried out in the same way as described for 1. The MeOH gave 3b (8 mg) as an amorphous powder: $[\alpha]^{25}_{D} + 41.0^{\circ}$ (*c* 0.7, MeOH); NMR data, see Table 1; FABMS $m/z [M - H]^-$ 319. From the H₂O water eluate, D-glucose was detected.

Acknowledgment. We are grateful to Dr. T. Miyase, School of Pharmaceutical Sciences, University of Shizuoka, for recording the NMR data of compound 3.

References and Notes

(1) Jiang su xin yi yuan, Zhong yao da ci dian, Shanghai ren min: Shanghai, 1977, p 667.

- (2) Yoshikawa, K.; Kimura, E.; Mimura, N.; Kondo, Y.; Shigenobu, A. J. Nat. Prod. 1998, 61, in press.
 (3) Lundquist, K.; Mikshe, G. E. Tetrahedron Lett. 1965, 2134–2136.
- Miki, K.; Takehara, T.; Sasaya, T.; Sakakibara, A. *Phytochemistry* **1980**, *19*, 449–453. (4)
- (5) Lundquist, K.; Stomberg, R. Acta Chem. Scand. 1987, B41, 610-616.
- (6) Uchiyama, T.; Miyase, T.; Ueno, A.; Usmaghni, K. Phytochemistry 1989, 28, 3369-3372.
- Mathushita, H.; Miyase, T.; Ueno, A. H. Phytochemistry 1991, (7) 30. 2025-2027.
- (8)
- Wu, Z.-H.; Mathuoka, M.; Lee, D.-Y.; Sunitomo, M. *Mokuzaigaku Gakkaishi* **1991**, *37*, 164–171. Miyase, T. *School of Pharmaceutical Sciences, University of Shizuoka, personal communication to the NMR data of com-*(9) pound **3**, 1998. NMR data (pyridine- d_5), erythro isomer: δ 74.9 (C-1), 64.7 (C-2), 57.0 (C-2), 5.73 (1H, d, J = 5.5 Hz), three isomer: δ 78.0 (C-1), 66.0 (C-2), 56.3 (C-2), 5.61 (1H, d, J = 8.0Hz).
- (10) Seo, S.; Tomita, Y.; Tori, K.; Yoshimura, Y. J. Am. Chem. Soc. **1978**, *100*, 3331–3339.

NP980003D